Reconstructing parallel clines in flowering phenology using herbarium specimens of *Lythrum salicaria*

Yihan Wu and Robert I. Colautti
I look at the teeth of different dead animals to figure out how they shared food while living at the same time and place.

(Reeeally wish #mammals, #carnivores, or even meat-eating were on that list!)

#CSEETweetShop

Cylita Guy @CylitaGuy · 1h

Replied to @KirstenGrant3

Nice summary!

Loving these common word research summaries from the #CSEETweetShop!
I find photographs of plants from the past,
measure how long their sex parts are,
and when their sex parts open
and close over the years.
Global Biodiversity Information Facility

~ 75 million preserved specimens records
Montague et al. 2008

Glasshouse

Days to first flower

Latitude (°N)

200 km

Montague et al. 2008
1) Parallel clines across North America
2) Phenological shifts over time
1978-07-08
Illinois, Lake County,
T_46N R_9E S_28
The graph illustrates the change in the variable $phind$ over time. The equation is given by:

$$\text{phind} = \frac{0.5 \times \text{flowers} + 1 \times \text{fruits}}{\text{total inflorescence}}$$
Sept 6, 2008

Kentucky

Wisconsin
Wallace Lake, Wisconsin

July 18, 1988

Oct 10, 1988
Growing-Degree-Days

\[GDD = \frac{T_{\text{max}} + T_{\text{min}}}{2} - T_{\text{base}} \]
62,208 annual weather records
6,303 unique weather stations
$\sum_{i=1}^{n} \frac{GDD_i}{d_i}$

3,427 herbarium specimens
6,303 unique weather stations

$GDD = \frac{\sum_{i=1}^{n} \frac{GDD_i}{d_i}}{\sum_{i}^{n} \frac{1}{d_i}}$
Parallel clines across North America
2) Phenological shifts over time

Growing-Degree-Days

$phind$
phind \sim \frac{1}{1 + \left(\frac{GDDc}{f}\right)^{-r}}

Variables in \(f \) and \(r \):
- Time since invasion
- Season Length

Non-linear least squares model
The graphs illustrate the relationship between cumulative growing-degree-days (GDDc) and a hypothetical variable, phind, across different growing seasons. The x-axis represents cumulative growing-degree-days, while the y-axis shows the value of phind.

- **Short Growing Season**: Shows the least GDDc but the highest phind value compared to the other two seasons.
- **Median Growing Season**: Displays a moderate level of GDDc and a mid-range phind value.
- **Long Growing Season**: Exhibits the highest level of GDDc but the lowest phind value.

Legend:
- **Population Age**
 - **New**
 - **Intermediate**
 - **Old**

Each season is represented by different line styles and colors in the graphs.
• Replicated clines in phenology across North America
• Phenological clines have strengthened over time
Acknowledgements

Collection and Measurement:
Leila Forsyth
Julia Weder

Climate Data: NOAA

Herbarium Databases:
GBIF
VASCAN
SEINET

Herbariums:
Herbier Louis-Marie - Université Laval, University of Washington, University of Alberta, University and Jepson Herbaria, Kent State University, Lynchburg College, University of Massachusetts, Memphis State University, New Mexico State University, University of North Carolina, Queen’s University, Rancho Santa Ana Botanic Garden, Western New Mexico University, UC Davis, UC Riverside, Utah State University, Royal Museum of British Columbia, Yale Peabody Herbarium, Oregon State University, Washington State University

Questions?

Colautti and Eckert Lab members
Dr. Stephen Lougheed
Dr. Vicki Friesen

Image Sources:
Flickr
Noun Project
Flowering time index

\[fti \sim phind + Ratio_{GDDc} \]